sábado, 27 de septiembre de 2014

SIMULADORES DE REDES

TIPOS DE SIMULADORES DE REDES

  • Gns3
GNS3 es un simulador gráfico de red que te permite diseñar topologías de red complejas y poner en marcha simulaciones sobre ellos.
Para permitir completar simulaciones, GNS3 está estrechamente vinculada con:

  • Dynamips, un emulador de IOS que permite a los usuarios ejecutar binarios imágenes IOS de Cisco Systems.
  • Dynagen, un front-end basado en texto para Dynamips
  • Qemu, un emulador de PIX.GNS3 es una excelente herramienta complementaria a los verdaderos laboratorios para los administradores de redes de Cisco o las personas que quieren pasar sus CCNA, CCNP, CCIE DAC o certificaciones.

  • Ns
ns es un simulador de redes basado en eventos discretos.
Se usa principalmente en ambientes educativos y de investigación. Permite simular tanto protocolos unicast como multicast y se utiliza intensamente en la investigación de redes móviles ad-hoc. Implementa una amplia gama de protocolos tanto de redes cableadas como de redes inalámbricas.
ns es software libre, se ofrece bajo la versión 2 de la GNU General Public License. Cuenta con dos versiones ns-2 y ns-3 que en general son incompatibles.


  • Packet Tracer
Packet Tracer es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de CiscoCCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.

PARA QUE SE UTILIZA PACKET TRACER

Tracer es un simulador que permite realizar el diseño de topologías,la configuración de dispositivos de red, así como la detección y corrección deerrores en sistemas de comunicaciones. Ofrece como ventaja adicional elanálisis de cada proceso que se ejecuta en el programa de acuerdo ala capa de modelo OSI que interviene en dicho proceso; razón por la cuál esuna herramienta de gran ayuda en el estudio y aprendizaje delfuncionamiento y configuración de redes telemáticas, adicionalmente, esun programa muy útil para familiarizarse con el uso de los comandos delIOS (El sistema operativo de los dispositivos de red de Cisco).Esta herramienta software ofrece una interfaz basada en ventanas, la cualofrece al usuario facilidades para el diseño, configuración y simulación deredes. Presenta tres modos de operación: el primero de estos es el modotopology (topología), que aparece en la ventana de inicio cuando se abreel programa, el otro es el modo simulation (simulación), al cual seaccede cuando se ha creado el modelo de la red; finalmente aparece elmodo realtime (tiempo real), en donde se pueden programar mensajes SNMP(Ping), para detectar los dispositivos que están activos en la red y si.

VENTANA DE PACKET TRACER
1. Es nuestro espacio de trabajo se convertirá en un mapa para poder trabajar en ella.
2. La barra de herramientas, poseen las opciones básicas y tradicionales de un software como archivo, vista, ayuda, opciones, edición, herramientas, etc. De los cuales están guardar, abrir archivo, regresar, adelantar, zoom, imprimir, etc.
3. Tenemos opciones básicas y rápidas para el modelado, como Borrar (equis), enviar archivo (carta), Zoom rápido (Lupa), Coger (la manita), seleccionar (cuadro punteado).
4. El modo a escoger de cómo visualizar el envío de un archivo en nuestra simulación, tenemos en tiempo real, y en vista simulada.
5. Nos muestra los resultados de la simulación, si el mensaje fue entregado con éxito o no, funciona en ambos modos de visualización.
6. La gama de opciones según nuestro menú de implemento de nuestra simulación de red, ejemplo si escogemos routers en nuestro menú, en esta sección de gama de opciones tendremos diferentes tipos de routers que se puedan utilizar.
7. Menú de implemento de la simulación de red. tenemos implemento como routers cables de conexión, switches, multiuser conection, End Divices, wireless Divices, etc.
8. Es el espacio donde se modelara y trabajara la simulación de red.



COMO CREAR UNA LAN EN PACKET TRACER
  1. Se ordenan las computadoras a conectar 
  2. Se solicita un switch para su conexión
  3. Se conectan las computadoras con el switch 
  4. Se les proporciona una dirección IP para su configuración
MODOS DE OPRECACION EN PACKET TRACERTOPOLOGIA,SIMULACION Y TIEMPO REAL)

En el Modo Topology, se realizan tres tareas principales, la primera deellas es el diseño de la red mediante la creación y organización de losdispositivos; por consiguiente en este modo de operación se dispone deun área de trabajo y de un panel de herramientas en donde seencuentran los elementos de red disponibles en Packet Tracer.En la figura se identifican claramente 4 secciones: la primera consiste enla barra de herramientas con la cual se puede crear un nuevo esquema,guardar una configuración, zoom, entre otras funciones.

La segunda sección corresponde al área de trabajo, sobre la cual se realiza el dibujo del esquema topológico de la red.

La herramienta está diseñada para orientar al estudiante en sumanipulación adecuada. Dentro del modo de operación topology, existe una herramienta que permite hacer de forma automática, las conexiones entre los dispositivos de la red, ésta opción se activa cuando se selecciona el Simple Mode (modo simple) y esta selección hace que el programa sea el que elija tipo de enlace, de acuerdo con la conexión que se va a realizar.Cuando se desactiva el Simple Mode, el usuario debe seleccionar el enlace y los puertos de los dispositivos por los cuales se efectuará dicha conexión.Adicionalmente, re recomienda que en las primeras experiencias con el programa, se debe trabajar y configurar manualmente los dispositivos y enlaces, es decir con el Simple Mode inactivo; debido a que es así como realmente interactuará el usuario con cada una de las conexiones a la hora de realizar un montaje real con equipos de éste tipo.

En el Modo Simulation, se crean y se programan los paquetes que se vana transmitir por la red que previamente se ha modelado.


Dentro de este modo de operación se visualiza el proceso de transmisión y recepción de información haciendo uso de un panel de herramientas que contiene los controles para poner en marcha la simulación.Una de las principales características del modo de operación simulation, es que permite desplegar ventanas durante la simulación, en las cuales aparece una breve descripción del proceso de transmisión de los paquetes;en términos de las capas del modelo OSI. En a siguiente figura se ilustra un ejemplo en el que se envía un paquete desde el PC0 al PC5



Y finalmente el Modo de operación en tiempo real, está diseñado para enviar pings o mensajes SNMP, con el objetivo de reconocer los dispositivos de la red que están activos, y comprobar que se puedan transmitir paquetes de un hosts a otro(s) en la red.
Dentro del modo Realtime, se encuentra el cuadro de registro Ping log, en donde se muestran los mensajes SNMP que han sido enviados y se detalla además el resultado de dicho proceso; con base en este resultado se puede establecer cuál o cuales de los terminales de la red están inactivos, a causa de un mal direccionamiento IP, o diferencias en el tamaño de bits de los paquetes.En la siguiente figura se ilustra claramente un ejemplo de una red, en donde se ingresa a uno de los equipos (PC5) y se hace PING al equipo PC0.Dentro de las ventajas y desventajas que ofrece el uso de Packet Tracerpodemos mencionar:


TIPOS DE ROUTERS, SWITCHES Y DISPOSITIVOS INALAMBRICOS UTILIZADOS EN PACKET TRACER
*ACCESS POINT-PT


Un Punto de Acceso Inalámbrico (WAP o AP por sus siglas en inglés: Wireless Access Point) en redes de computadoras es un dispositivo que interconecta dispositivos de comunicación alámbrica para formar una red inalámbrica. Normalmente un WAP también puede conectarse a una red cableada, y puede transmitir datos entre los dispositivos conectados a la red cable y los dispositivos inalámbricos. Muchos WAPs pueden conectarse entre sí para formar una red aún mayor, permitiendo realizar"roaming".

*ROUTER INALÁMBRICO

Un Ruter Inalámbrico o Ruteador Inalámbrico es un dispositivo que realiza las funciones de un ruter, pero también incluye las funciones de un punto de acceso inalámbrico. Se utiliza comúnmente para proporcionar acceso a Internet o a una red informática. No se requiere un enlace por cable, ya que la conexión se realiza sin cables, a través de ondas de radio. Puede funcionar en una LAN cableada (local Area Network), en una LAN sólo-inalámbrica (WLAN), o en una red mixta cableada/inalámbrica, dependiendo del fabricante y el modelo.

TIPOS DE CONEXIONES DISPONIBLES



*CONSOLA 
Conexiones de la consola se puede hacer entre las PC y los routers o switches. Ciertas condiciones deben cumplirse para que la sesión de consola desde el PC a la obra: la velocidad a ambos lados de la conexión debe ser el mismo, los bits de datos debe ser de 7 u 8 para ambos para ambos, la paridad debe ser el mismo, la parada bits debe ser de 1 ó 2 (pero no tienen por qué ser lo mismo), y el control de flujo puede ser cualquier cosa de cualquier lado.
*PUNTO A PUNTO
Este tipo de cable es el medio de Ethernet estándar para la conexión entre los dispositivos que operan en diferentes capas OSI (como HUB a router, un switch a un PC, un router al cubo). Puede ser conectada a los tipos de puertos siguientes: 

  • 10 Mbps de cobre (Ethernet)
  • 100 Mbps de cobre (Fast Ethernet)
  • 1000 Mbps de cobre (GigabitEthernet).

*CRUZADOS
Este tipo de cable es el medio de Ethernet para la conexión entre los dispositivos que operan en la misma capa de OSI (como el cubo a cubo, de PC a PC, PC a la impresora). Puede ser conectada a los tipos de puertos siguientes:
  • 10 Mbps de cobre (Ethernet)
  • 100 Mbps decobre (Fast Ethernet)
  • 1000 Mbps de cobre (GigabitEthernet).

*FIBRA ÓPTICA
Los medios de comunicación de fibra se utiliza para hacer conexiones entre puertos de fibra (100 Mbps o 1000 Mbps).
*TELÉFONO
Conexiones de línea telefónica sólo puede hacerse entre dispositivos con puerto de módem. La aplicación estándar para las conexiones de módem es un dispositivo final (por ejemplo, un PC) de marcación en una nube de red.
*COAXIAL
Los medios de comunicación coaxial se utiliza para hacer conexiones entre los puertos coaxiales como un módem por cable conectado a una nube de Packet Tracer.
*SERIAL DCE & SERIAL DTE
Conexiones en serie, a menudo utilizadas para las conexiones WAN, se debe conectar entre los puertos de serie. Tenga en cuenta que debe habilitar reloj en el lado DCE para que aparezca el protocolo de línea. El reloj DTE es opcional. Usted puede decir qué extremo de la conexión es el lado DCE por el pequeño "reloj" icono situado junto al puerto. Si eliges el tipo de conexión en serie DCE y luego conectar dos dispositivos, el primer dispositivo será el lado DCE y el segundo dispositivo se ajustará automáticamente a la parte DTE.
Lo contrario es cierto si usted elige el tipo de conexión serie DTE.


DISPOSITIVOS TERMINALES



Son los últimos dispositivos de la conexión de red es decir, las PC de escritorio de una LAN o e el servidor de la misma, además de una impresora y un teléfono.


Para ser mas claros y especificos, entre los dispositivos terminales de la ventana de Packet Tracer, se encuentra:


  1. PC
  2. SERVIDORES
  3. IMPRESORAS
  4. TELEFONOS IP
DISPOSITIVOS ADICIONALES


*PC CON TARJETA INALAMBRICA
También llamadas Tarjetas Wi-Fi, son tarjetas para expansión de capacidades que sirven para enviar y recibir datos sin la necesidad de cables en las redes inalámbricas de área local ("W-LAN "Wireless Local Area Network"), esto es entre redes inalámbricas de computadoras.

Básicamente son redes con topología de infraestructura pero que permiten unirse a la red a dispositivos que a pesar de estar fuera del rango de cobertura de los puntos de acceso están dentro del rango de cobertura de alguna tarjeta de red (TR) que directamente o indirectamente está dentro del rango de cobertura de un punto de acceso (PA).Permiten que las tarjetas de red se comuniquen entre sí,independientemente del punto de acceso. Esto quiere decir que los dispositivos que actúan como tarjeta de red pueden no mandar directamente sus paquetes al punto de acceso sino que pueden pasárselos a otras tarjetas de red para que lleguen a su destino.

Para que esto sea posible es necesario el contar con un protocolo de enrutamiento que permita transmitir la información hasta su destino con el mínimo número de saltos (HOPS en inglés) o con un número que aún no siendo el mínimo sea suficientemente bueno. Es resistente a fallos, pues la caída de un solo nodo no implica la caída de toda la red.

VENTAJAS Y DESVENTAJAS DE PACKET TRACER

REGLAS DE INTERCONEXION ENTRE DISPOSITIVOS EN PACKET TRACER
Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:



Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).

Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

Interconexión de Dispositivos

Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría sería interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos “conecciones” y nos aparecerán todos los medios disponibles.





Una vez que seleccionamos el medio para interconectar dos dispositivos y vamos al escenario el puntero se convierte en un conector. Al hacer click en el dispositivo nos muestra las interfaces disponibles para realizar conexiones, hacemos click en la interface adecuada y vamos al dispositivo con el cual queremos conectar y repetimos la operación y quedan los dispositivos conectados.

sábado, 13 de septiembre de 2014

TOPOLOGIAS DE REDES

BUS

Una Red o topologia en forma de Bus o Canal de difusión es un camino de comunicación bidireccional con puntos de terminación bien definidos. Cuando una estación trasmite, la señal se propaga a ambos lados del emisor hacia todas las estaciones conectadas al Bus hasta llegar a las terminaciones del mismo. Así, cuando una estación trasmite su mensaje alcanza a todas las estaciones, por esto el Bus recibe el nombre de canal de difusión. Otra propiedad interesante es que el Bus actúa como medio pasivo y por lo tanto, en caso de extender la longitud de la red, el mensaje no debe ser regenerado por repetidores (los cuales deben ser muy fiables para mantener el funcionamiento de la red). En este tipo de topología cualquier ruptura en el cable impide la operación normal y es muy difícil de detectar. Por el contrario, el fallo de cualquier nodo no impide que la red siga funcionando normalmente, lo que permite añadir o quitar nodos a la red sin interrumpir su funcionamiento.

Ventajas
  • Facilidad de implementación y crecimiento. 
  • Faciles de instalar 
  • Requiere menor cantidad de fisico
  • Simplicidad en la arquitectura

Desventajas

  • Hay un límite de equipos dependiendo de la calidad de la señal.
  • Puede producirse degradación de la señal.
  • Complejidad de reconfiguración y aislamiento de fallos.
  • Limitación de las longitudes físicas del canal.
  • Un problema en el canal usualmente degrada toda la red.
  • El desempeño se disminuye a medida que la red crece.
  • El canal requiere ser correctamente cerrado (caminos cerrados).
  • Altas pérdidas en la transmisión debido a colisiones entre mensajes.
  • Es una red que ocupa mucho espacio.

TOPOLOGÍA DE ANILLO

Esta topología conecta a las computadoras con un solo cable en forma de circulo. Con diferencia de la topología bus, las puntas no están conectadas con un terminados. Todas las señales pasan en una dirección y pasan por todas las computadoras de la red. Las computadoras en esta topología funcionan como repeaters, porque lo que hacen es mejorar la señal. Retransmitiéndola a la próxima computadora evitando que llegue débil dicha señal. La falla de una computadora puede tener un impacto profundo sobre el funcionamiento de la red. 
         La principal ventaja de la red de anillo es que se trata de una arquitectura muy sólida, que pocas veces entra en conflictos con usuarios.
Doble anillo (Token ring): Un método de transmisión de datos alrededor del anillo se denomina token passing. Esta técnica consiste en que la computadora emisora transmita un dato que la computadora receptora la reciba y que esta mande una señal de respuesta informando que recibió el dato correctamente. Todo esto se hace a la velocidad de la luz. Las redes Token Ring no tienen colisiones. Si el anillo acepta el envío anticipado del token, se puede emitir un nuevo token cuando se haya completado la transmisión de la trama. Las redes Token Ring usan un sistema de prioridad sofisticado que permite que determinadas estaciones de alta prioridad designadas por el usuario usen la red con mayor frecuencia. Las tramas Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y el campo de reserva.
 Ventajas
·        El sistema provee un acceso equitativo para todas las computadoras
·        El rendimiento no decae cuando muchos usuarios utilizan la red.
Desventajas
·         La falla de una computadora altera el funcionamiento de toda lea red.
·         Las distorsiones afectan a toda la red.


TOPOLOGIA DE ESTRELLA

La topología estrella es una de las topologías más populares de un LAN (Local Area Network).  Es implementada conectando cada computadora a un Hub central.  El Hub puede ser Activo, Pasivo o Inteligente.  Un hub activo es solo un punto de conección y no requiere energía electrica.  Un Hub activo (el más común) es actualmente un repetidor con multiples puertos; impulsa la señal antes de pasarla a la siguiente computadora.  Un Hub Inteligente es un hub activo pero con capacidad de diagnostico, puede detectar errores y corregirlos.

Comunicación en la Topología Estrella

En una red estrella tipica, la señal pasa de la tarjeta de red (NIC) de la computadora que esta enviando el mensaje al Hub y este se encarga de enviar el mensaje a todos los puertos.  La topología estrella es similar a la Bus, todas las computadoras reciben el mensaje pero solo la computadora con la dirección, igual a la dirección del mensaje puede leerlo. 

Ventajas de la Topología Estrella

+La topología estrella tiene dos ventajas grandes a diferencia de la topología Bus y Ring.


+Es más tolerante, esto quiere decir que si una computadora se desconecta o si se le rompe el cable solo esa computadora es afectada y el resto de la red mantiene su comunicación normalmente.
+
Es facíl de reconfigurar, añadir o remover una computadora es tan simple como conectar o desconectar el cable.

Desventajas de la Topología Estrella


+Es costosa ya que requiere más cable que la topología Bus y Ring.
+
El cable viaja por separado del Hub a cada computadora.
+
Si el Hub se cae, la red no tiene comunicación
+
Si una computadora se cae, no puede enviar ni recibir mensajes.

ARBOL
La Topología de árbol es aquella topología de red en la que los nodos están colocados en forma de árbol. La conexión en árbol es parecida a una serie de redes en estrella interconectadas a diferencia de que no tienen nodo central. Tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos.
La falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones. La topología de árbol combina características de la topología de estrella con la BUS. Consiste en un conjunto de subredes estrella conectadas a un BUS. Esta topología facilita el crecimiento de la red.
Los problemas asociados a las topologías anteriores radican en que los datos son recibidos por todas las estaciones sin importar para quien vayan dirigidos lo que puede producir interferencia entre las señales cuando dos o más estaciones transmiten al mismo tiempo. Por lo que hay que establecer un identificador de estación destino y mantener la cooperación entre todas las estaciones.


TOPOLOGÍA DE TELARAÑA

Las topologías de telaraña están inmediatamente con el concepto de rutas. A diferencia de todas las topologías anteriores, los mensajes enviados en una red de telaraña pueden tomar cualquiera de las muchas rutas posibles para llegar a su destino.
Algunos WANs (Redes de Cobertura Amplia), como la internet emplean las rutas de telaraña. En cada parte de la telaraña existe un equipo de cómputo el cual recibe y envía información.
La ventaja de esta topología es la fiabilidad frente a fallas, si una computadora falla no afecta a las demás, tiene grandes posibilidades de reconfiguración y permite tráficos elevados de información con retardos pequeños.

TIPOS DE COMUNICACION DE REDES ALAMBRICAS E INALAMBRICAS

TIPOS DE COMUNICACION DE REDES ALAMBRICAS E INALAMBRICAS

Los cables de red son aquellos alambres que permiten conectar a las computadoras entre sí o a terminales de redes y es por medio de estos que los bits se trasladan. Existen numerosos tipos de cables de red, que se pueden agrupar en las siguientes categorías:

TIPO DE CABLES UTILIZADOS EN REDES ALAMBRICAS:

CABLE COAXIAL:

Estos cables se caracterizan por ser fáciles de manejar, flexibles, ligeros y económicos. Están compuestos por hilos de cobre, que constituyen en núcleo y están cubiertos por un aislante, un trenzado de cobre o metal y una cubierta externa, hecha de plástico, teflón o goma.

Los cables coaxiales son ideales para transmitir voz, datos y videos, son económicos, fáciles de usar y seguros.


CABLES DE PAR TRENZADO:

Estos cables están compuestos por dos hilos de cobre entrelazados y aislados y se los puede dividir en dos grupos: apantallados (STP) y sin apantallar (UTP). Estas últimas son las más utilizadas en para el cableado LAN y también se usan para sistemas telefónicos. Los segmentos de los UTP tienen una longitud que no supera los 100 metros y está compuesto por dos hilos de cobre que permanecen aislados. Los cables STP cuentan con una cobertura de cobre trenzado de mayor calidad y protección que la de los UTP. Además, cada par de hilos es protegido con láminas, lo que permite transmitir un mayor número de datos y de forma más protegida. Se utilizan los cables de par trenzado para LAN que cuente con presupuestos limitados y también para conexiones simples.



CABLES DE FIBRA OPTICA:


Estos transportan, por medio de pulsos modulados de luz, señales digitales. Al transportar impulsos no eléctricos, envían datos de forma segura ya que, como no pueden ser pinchados, los datos no pueden ser robados. Gracias a su pureza y la no atenuación de los datos, estos cables transmiten datos con gran capacidad y en poco tiempo.
La fibra óptica cuenta con un delgado cilindro de vidrio, llamado núcleo, cubierto por un revestimiento de vidrio y sobre este se encuentra un forro de goma o plástico. Como los hilos de vidrio sólo pueden transmitir señales en una dirección, cada uno de los cables tiene dos de ellos con diferente envoltura. Mientras que uno de los hilos recibe las señales, el otro las transmite. La fibra óptica resulta ideal para la transmisión de datos a distancias importantes y lo hace en poco tiempo.



CABLE MULTIPAR:


Un cable multipar es aquel formado por grupos de 2 hilos de material conductor,de grosores entre 0,3 mm y 3 mm, recubiertos de plástico protector.
En su composición se da un elevado número de pares de cobre, generalmente múltiplo de 25.
Principalmente son utilizados para la conexión física de equipos de telefonía, en redes de datos, como las LAN, que es la interconexión entre varios ordenadores y periféricos. Entre las clases de cables multipares se dan los TELCON, utilizados en instalaciones aéreas, y que presentan cómo algunas de las principales características su núcleo relleno, que son conductores de cobre desnudo reconocido y que poseen una excelente perfomance eléctrica y mecánica.


TÉCNICA DE COMUNICACIÓN EN REDES INALAMBRICAS


Actualmente, las tecnologías de LAN inalámbricas comprenden de infrarrojo (IR), radio de UHF, spread spectrum y radio microondas, que van desde frecuencias en Ghz en la región de Europa (900 Mhz en los EE.UU.) a frecuencias infrarrojas. La red de comunicación personal (PCN) puede usar una banda CDMA (code-division multiple access) compartida, y el servicio celular digital una banda TDMA (time-division multiple access). Hay una controversia considerable entre los expertos en el campo, con respecto a los méritos relativos al spread spectrum (CDMA) y la banda-angosta (TDMA) para la red de comunicación privada (PCN). La técnica preferida realmente puede variar con el escenario PCN especifico hacia quien va dirigido.
  • Spread spectrum (CDMA): Este término define una clase de sistemas de radios digitales en los que el ancho de banda ocupado es considerablemente mayor que la proporción de información. La técnica se propuso inicialmente para uso del ejército, donde las dificultades de descubrir o bloquear semejante signo le hicieron una opción atractiva para comunicación. El término CDMA se usa a menudo en referencia a sistemas que tienen la posibilidad de transmitir varias señales en la misma porción de espectro usando códigos pseudo-aleatorios para cada uno. Esto puede ser logrado por una serie de pulsos de frecuencias diferentes, en un modelo predeterminado o a la sucesión directa de una onda binaria pseudo-aleatoria cuya tasa de símbolos es un múltiplo mayor a la tasa de bit de la trama original.
  • Time Division Multiple Access (TDMA): El principio de TDMA es básicamente simple. Tradicionalmente, los canales de voz han sido creados dividiendo el espectro de la radio en portadores de frecuencia RF (canales), con una conversación que ocupa un canal (dúplex). Esta técnica es conocida como FDMA (frecuency division multiple access). TDMA divide a los portadores de la radio en una sucesión repetida de pequeñas ranuras de tiempo (canales). Cada conversación ocupa justo una de estas ranuras de tiempo. Así en lugar de sólo una conversación, cada portador de la radio lleva varias conversaciones a la vez.


viernes, 12 de septiembre de 2014

MÉTODOS DE TRANSMISIÓN DE DATOS



MÉTODOS DE TRANSMISIÓN DE DATOS
-SEGÚN LA MANERA DE LA TRANSMISIÓN

*BANDA BASE


Se denomina banda base al conjunto de señales que no sufren ningúnproceso de modulación a la salida de la fuente que las origina, es decirson señales que son transmitidas en su frecuencia original. Dichasseñales se pueden codificar y ello da lugar a los códigos de bandabase.Las señales empleadas en banda base se pueden clasificar de la siguiente forma:


UNIPOLARES:
En este caso un 1 siempre toma una polaridad, positiva o negativa, mientras que un 0 vale siempre 0.

POLARES:
En este caso la señal tomara valores positivos para un 1 lógico y negativos para un 0lógico pero nunca toma el valor 0.BIPOLARESEn este caso un dígito toma valor con polaridad alternada mientras que el otro permanece siempreen 0.


CARACTERÍSTICAS DE LA TRANSMISIÓN EN BANDA BASE:

La señal más simple que se emplea es la NRZL (NonReturn to Zero Level)La señal no retorna a 0 y el pulso de tensión tiene la duración de 1 bit.Generalmente un 1 lógico es un pulso de tensión mientras que un 0 lógico es la ausencia de dichopulso de tensión.


*BANDA ANCHA



Red (de cualquier tipo) que tiene una elevada capacidad para transportar información que incide en la velocidad de transmisión de ésta.Así entonces, es la transmisión de datos simétricos por la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión. Así se utilizan dos o más canales de datos simultáneos en una única conexión, lo que se denomina multiplexación (véase sección más abajo).
Algunas de las variantes de los servicios de Fiber To The Home son de banda ancha. Los routers que operan con velocidades mayores a 100 Mbit/s también son banda ancha, pues obtienen velocidades de transmisión simétricas.
El concepto de banda ancha ha evolucionado con los años. La velocidad que proporcionaba RDSI con 128 Kb/s dio paso al SDSL con una velocidad de 256 Kb/s. Posteriormente han surgido versiones más modernas y desarrolladas de este último, llegando a alcanzar desde la velocidad de 512 Kb/s hasta los 150 Mb/s simétricos en la actualidad.

-SEGÚN LA INFORMACIÓN

*ASÍNCRONA



La transmisión da lugar cuando el proceso de sincronizan entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.


El ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. Es un tipo de relación típica para la transmisión de datos.

En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
El bit de arranque tiene dos funciones de sincronización de reloj del transmisor y del receptor.
El bit o bits de parada, se usan para separar un caracter del siguiente.


Después de la transmisión de los bits de información se suele agregar un bit de paridad (par o impar). Dicho Bit sirve para comprobar que los datos se transfieran sin interrupción. El receptor revisa la paridad de cada unidad de entrada de datos.


Partiendo desde la línea de transmisión en reposo, cuando tiene el nivel lógico 1, el emisor informa al receptor de que va a llegar un carácter, para ello antepone un bit de arranque (Start) con el valor lógico 0. Una vez que el bit Start llega al receptor este disparará un reloj interno y se quedará esperando por los sucesivos bits que contendrá la información del carácter transmitido por el emisor.


*SINCRONA


Es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.

Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).

Características
Los bloques a ser transmitidos tienen un tamaño que oscila entre 128 y 1,024 bytes. La señal de sincronismo en el extremo fuente, puede ser generada por el equipo terminal de datos o por el módem. Cuando se transmiten bloques de 1,024 bytes y se usan no más de 10 bytes de cabecera y terminación, el rendimiento de transmisión supera el 99 por 100.


-SEGÚN EL MODO DE TRANSMISIÓN




*SERIE 
En este tipo de transmisión los bits se trasladan uno detrás del otro sobre una misma línea, también se transmite por la misma línea.
Este tipo de transmisión se utiliza a medida que la distancia entre los equipos aumenta a pesar que es más lenta que la transmisión paralelo y además menos costosa. Los transmisores y receptores de datos serie son más complejos debido a la dificultad en transmitir y recibir señales a través de cables largos.
La conversión de paralelo a serie y viceversa la llevamos a cabo con ayuda de registro de desplazamiento.
La transmisión serie es sincrona si en el momento exacto de transmisión y recepción de cada bit esta determinada antes de que se transmita y reciba y asincrona cuando la temporizacion de los bits de un caracter no depende de la temporizacion de un caracter previo.

*PARALELO
La transmisión de datos entre ordenadores y terminales mediante cambios de corriente o tensión por medio de cables o canales; la transferencia de datos es en paralelo si transmitimos un grupo de bits sobre varias líneas o cables.

En la transmisión de datos en paralelo cada bit de un caracter se transmite sobre su propio cable. En la transmisión de datos en paralelo hay un cable adicional en el cual enviamos una señal llamada strobe ó reloj; esta señal le indica al receptor cuando están presentes todos los bits para que se puedan tomar muestras de los bits o datos que se transmiten y además sirve para la temporización que es decisiva para la correcta transmisión y recepción de los datos.

La transmisión de datos en paralelo se utiliza en sistemas digitales que se encuentran colocados unos cerca del otro, además es mucho mas rápida que la serie, pero además es mucho mas costosa.


-SEGÚN LAS SEÑALES TRANSMITIDAS




*ANALOGIA

En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.
En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.
Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.

*DIGITAL
En la transmisión digital existen dos notables ventajas lo cual hace que tenga gran aceptación cuando se compara con la analógica. Estas son:
El ruido no se acumula en los repetidores.
El formato digital se adapta por si mismo de manera ideal a la tecnología de estado sólido, particularmente en los circuitos integrados.
Al convertir estas señales al formato digital se pueden aprovechar las dos características anteriormente citadas.

Para transmitir información digital(binaria 0 ó 1) por la red telefónica, la señal digital se convierte a una señal analógica compatible con la el equipo de la red y esta función se realiza en el Módem.


lunes, 8 de septiembre de 2014

TIPOS DE REDES

Red de área local LAN (Local Area Network )

Esta es una red limitada en un espacio físico que puede ser una oficina, edificio, universidad, etc. con un límite teórico de unos 8.000 puestos o estaciones de trabajo.
Normalmente cubre distancias de unos pocos centenares de metros alcanzando, las más proliferas, hasta 1 Km. de distancia entre un computador y otro. Su finalidad principal consiste en compartir los recursos y la información que dispone dicha red en el mínimo tiempo posible y sin duplicar la información en tanto y en cuanto sea posible y deseable.

Red MAN ( Metropolitan Area Network )


Es una red de área metropolitana, es decir, de cubrimiento geográfico por ciudades o por regiones y presta servicios a redes empresariales. Puede abarcar una distancia desde unas pocas decenas hasta 160 kilómetros.

RED WAN (Wide Area Network) 

Son redes de alcance geográfico muy amplio, pudiendo llegar a cubrir todo el planeta, tal y como es el caso de Internet.
La más antigua forma de WAN es la red USNET que conectan estaciones de trabajo UNIX a otras estaciones de trabajo UNIX. Estas redes fueron desarrolladas en la década de los años 60 y 70 cuando los computadores eran máquinas muy raras y apreciadas, de hecho una WAN es en verdad un aglomerado de subredes (redes locales) y computadores de varias plataformas que se conectan y dan origen a lo que hoy conocemos como Internet. Para hacer que este enmarañado de sistemas con una tecnología muy diversa (no siendo un requisito que sean necesariamente compatibles) pueda comunicarse es necesario disponer de un traductor de protocolo, comúnmente llamado "gateway" (pasarela). Los protocolos son conjuntos de normativas que determinan como debe realizarse el intercambio de datos entre los computadores (hardware) y los programas (software).